Answer
The value of $x=2$.
Work Step by Step
Consider the given system of equations
$\begin{align}
& 3x+y-2z=-3 \\
& 2z+7y+3z=9 \\
& 4x-3y-z=7
\end{align}$
Therefore, in matrix form, the system of equations can be written as below:
$AX=b$
Where
$A=\left[ \begin{array}{*{35}{r}}
3 & 1 & -2 \\
2 & 7 & 3 \\
4 & -3 & -1 \\
\end{array} \right];b=\left[ \begin{array}{*{35}{r}}
-3 \\
9 \\
7 \\
\end{array} \right];X=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]$
Therefore, the solution of the system of equations is given by:
$X={{A}^{-1}}b$
Therefore, using Cramer’s rule, the solution of the system of the equations is
$x=\frac{\left| {{A}_{x}} \right|}{\left| A \right|},y=\frac{\left| {{A}_{y}} \right|}{\left| A \right|},z=\frac{\left| {{A}_{z}} \right|}{\left| A \right|}$
Where
${{A}_{x}}=\left[ \begin{array}{*{35}{r}}
-3 & 1 & -2 \\
9 & 7 & 3 \\
7 & -3 & -1 \\
\end{array} \right],{{A}_{y}}=\left[ \begin{array}{*{35}{r}}
3 & -3 & -2 \\
2 & 9 & 3 \\
4 & 7 & -1 \\
\end{array} \right],{{A}_{z}}=\left[ \begin{array}{*{35}{r}}
3 & 1 & -3 \\
2 & 7 & 9 \\
4 & -3 & 7 \\
\end{array} \right]$
Consider the determinant of the matrix
$\begin{align}
& \left| A \right|=\left| \begin{array}{*{35}{r}}
3 & 1 & -2 \\
2 & 7 & 3 \\
4 & -3 & -1 \\
\end{array} \right| \\
& =3\left( -7+9 \right)-\left( -2-12 \right)-2\left( -6-28 \right) \\
& =6+14+68 \\
& =88
\end{align}$
$\begin{align}
& \left| {{A}_{x}} \right|=\left| \begin{array}{*{35}{r}}
-3 & 1 & -2 \\
9 & 7 & 3 \\
7 & -3 & -1 \\
\end{array} \right| \\
& =-3\left( -7+9 \right)-1\left( -9-21 \right)-2\left( -27-49 \right) \\
& =-6+30+152 \\
& =176
\end{align}$
$\begin{align}
& \left| {{A}_{y}} \right|=\left| \begin{array}{*{35}{r}}
3 & -3 & -2 \\
2 & 9 & 3 \\
4 & 7 & -1 \\
\end{array} \right| \\
& =3\left( -9-21 \right)+3\left( -2-12 \right)-2\left( 14-36 \right) \\
& =-90-42+44 \\
& =-88
\end{align}$
$\begin{align}
& \left| {{A}_{z}} \right|=\left| \begin{array}{*{35}{r}}
3 & 1 & -3 \\
2 & 7 & 9 \\
4 & -3 & 7 \\
\end{array} \right| \\
& =3\left( 49+27 \right)-\left( 14-36 \right)-3\left( -6-28 \right) \\
& =228+22+102 \\
& =352
\end{align}$
Therefore, the solution of the system of equations is given by:
$\begin{align}
& x=\frac{176}{88}=2 \\
& y=\frac{-88}{88}=-1 \\
& z=\frac{352}{88}=4
\end{align}$
The value of x is $x=2$.