Answer
The provided statement is True.
Work Step by Step
Take an arbitrary value $ z=1$; now substitute this value of z in the given solution set to find out the value of x, and y.
Since, $\begin{align}
& x=2z+3 \\
& y=5z-1 \\
\end{align}$
Substitute value $ z=1$ in $ y=5z-1$ to get, $\begin{align}
& y=5\times 1-1 \\
& =5-1 \\
& =4
\end{align}$
Substitute value $ z=1$ in $ x=2z+3$ to get, $\begin{align}
& x=2\times 1+3 \\
& =2+3 \\
& =5
\end{align}$
So, the values of $ x,y,z $ is:
$\begin{align}
& x=5 \\
& y=4 \\
& z=1 \\
\end{align}$
Hence, these values are $\left( 5,\ 4,\ 1 \right)$, which is equal to the solution mentioned in the statement.