Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Cumulative Review Exercises - Page 952: 8

Answer

The solution is, $x=2,y=-1,z=3$

Work Step by Step

Consider the given equation system $\begin{align} & x-2y+z=7 \\ & 2x+y-z=0 \\ & 3x+2y-2z=-2 \end{align}$ Therefore, in matrix form, the system of equations can be written as $AX=b$ Where $A=\left[ \begin{array}{*{35}{r}} 1 & -2 & 1 \\ 2 & 1 & -1 \\ 3 & 2 & -2 \\ \end{array} \right];b=\left[ \begin{array}{*{35}{r}} 7 \\ 0 \\ -2 \\ \end{array} \right];X=\left[ \begin{matrix} x \\ y \\ z \\ \end{matrix} \right]$ Therefore, using Cramer’s rule, the solution of the system of equations is $x=\frac{\left| {{A}_{x}} \right|}{\left| A \right|},y=\frac{\left| {{A}_{y}} \right|}{\left| A \right|},z=\frac{\left| {{A}_{z}} \right|}{\left| A \right|}$ Where ${{A}_{x}}=\left[ \begin{array}{*{35}{r}} 7 & -2 & 1 \\ 0 & 1 & -1 \\ -2 & 2 & -2 \\ \end{array} \right],{{A}_{y}}=\left[ \begin{array}{*{35}{r}} 1 & 7 & 1 \\ 2 & 0 & -1 \\ 3 & -2 & -2 \\ \end{array} \right],{{A}_{z}}=\left[ \begin{array}{*{35}{r}} 1 & -2 & 7 \\ 2 & 1 & 0 \\ 3 & 2 & -2 \\ \end{array} \right]$ Consider the determinant of the matrix $\begin{align} & \left| A \right|=\left| \begin{array}{*{35}{r}} 1 & -2 & 1 \\ 2 & 1 & -1 \\ 3 & 2 & -2 \\ \end{array} \right| \\ & =\left( -2+2 \right)+2\times \left( -4+3 \right)+\left( 4-3 \right) \\ & =0-2+1 \\ & =-1 \end{align}$ It can be further solved as below: $\begin{align} & \left| {{A}_{x}} \right|=\left| \begin{array}{*{35}{r}} 7 & -2 & 1 \\ 0 & 1 & -1 \\ -2 & 2 & -2 \\ \end{array} \right| \\ & =7\left( -2+2 \right)+2\left( 0-2 \right)+\left( 0+2 \right) \\ & =0-4+2 \\ & =-2 \end{align}$ $\begin{align} & \left| {{A}_{y}} \right|=\left| \begin{array}{*{35}{r}} 1 & 7 & 1 \\ 2 & 0 & -1 \\ 3 & -2 & -2 \\ \end{array} \right| \\ & =\left( 0-2 \right)-7\left( -4+3 \right)+\left( -4-0 \right) \\ & =-2+7-4 \\ & =1 \end{align}$ $\begin{align} & \left| {{A}_{z}} \right|=\left| \begin{array}{*{35}{r}} 1 & -2 & 7 \\ 2 & 1 & 0 \\ 3 & 2 & -2 \\ \end{array} \right| \\ & =\left( -2-0 \right)+2\left( -4-0 \right)+7\left( 4-3 \right) \\ & =-2-8+7 \\ & =-3 \end{align}$ Therefore, the solution of the system of equations is $\begin{align} & x=\frac{-2}{-1}=2 \\ & y=\frac{1}{-1}=-1 \\ & z=\frac{-3}{-1}=3 \end{align}$ The solutions are, $x=2,y=-1,z=3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.