Answer
The solution is, $x=7,y=-4,z=6$.
Work Step by Step
Consider the given equation system,
$\begin{align}
& x-y+z=17 \\
& 2x+3y+z=8 \\
& -4x+y+5z=-2
\end{align}$
The given system of equations can be written in matrix form as
$AX=b$
Where
$A=\left[ \begin{array}{*{35}{r}}
1 & -1 & 1 \\
2 & 3 & 1 \\
-4 & 1 & 5 \\
\end{array} \right];b=\left[ \begin{array}{*{35}{r}}
17 \\
8 \\
-2 \\
\end{array} \right];X=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]$
Therefore, the solution of the system of equations
$X={{A}^{-1}}b$
Consider the determinant of the matrix
$\begin{align}
& \left| A \right|=\left| \begin{array}{*{35}{r}}
1 & -1 & 1 \\
2 & 3 & 1 \\
-4 & 1 & 5 \\
\end{array} \right| \\
& =\left( 15-1 \right)+\left( 10+4 \right)+\left( 2+12 \right) \\
& =14+14+14 \\
& =42
\end{align}$
Consider the adjoint of the matrix
$\text{adj}\left( A \right)={{\left[ \begin{array}{*{35}{r}}
+\left| \begin{array}{*{35}{r}}
3 & 1 \\
1 & 5 \\
\end{array} \right| & -\left| \begin{array}{*{35}{r}}
2 & 1 \\
-4 & 5 \\
\end{array} \right| & +\left| \begin{array}{*{35}{r}}
2 & 3 \\
-4 & 1 \\
\end{array} \right| \\
-\left| \begin{array}{*{35}{r}}
-1 & 1 \\
1 & 5 \\
\end{array} \right| & +\left| \begin{array}{*{35}{r}}
1 & 1 \\
-4 & 5 \\
\end{array} \right| & -\left| \begin{array}{*{35}{r}}
1 & -1 \\
-4 & 1 \\
\end{array} \right| \\
+\left| \begin{array}{*{35}{r}}
-1 & 1 \\
3 & 1 \\
\end{array} \right| & -\left| \begin{array}{*{35}{r}}
1 & 1 \\
2 & 1 \\
\end{array} \right| & +\left| \begin{array}{*{35}{r}}
1 & -1 \\
2 & 3 \\
\end{array} \right| \\
\end{array} \right]}^{t}}$
Finally,
$\begin{align}
& \text{adj}\left( A \right)={{\left[ \begin{array}{*{35}{r}}
14 & -14 & 14 \\
6 & 9 & 3 \\
-4 & 1 & 5 \\
\end{array} \right]}^{t}} \\
& =\left[ \begin{array}{*{35}{r}}
14 & 6 & -4 \\
-14 & 9 & 1 \\
14 & 3 & 5 \\
\end{array} \right]
\end{align}$
Therefore
$\begin{align}
& {{A}^{-1}}=\frac{1}{\left| A \right|}\text{adj}\left( A \right) \\
& =\frac{1}{42}\left[ \begin{array}{*{35}{r}}
14 & 6 & -4 \\
-14 & 9 & 1 \\
14 & 3 & 5 \\
\end{array} \right]
\end{align}$
Therefore, the solution of the system of equations is
$\begin{align}
& X=\frac{1}{42}\left[ \begin{array}{*{35}{r}}
14 & 6 & -4 \\
-14 & 9 & 1 \\
14 & 3 & 5 \\
\end{array} \right]\left[ \begin{array}{*{35}{r}}
17 \\
8 \\
-2 \\
\end{array} \right] \\
& =\frac{1}{42}\left[ \begin{array}{*{35}{r}}
14\times 17+6\times 8+4\times 2 \\
-14\times 17+9\times 8-1\times 2 \\
14\times 17+3\times 8-5\times 2 \\
\end{array} \right] \\
& =\frac{1}{42}\left[ \begin{array}{*{35}{r}}
294 \\
-168 \\
252 \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{r}}
7 \\
-4 \\
6 \\
\end{array} \right]
\end{align}$
The solutions of the system is $x=7,y=-4,z=6$.