Answer
The provided statement does not make sense.
Work Step by Step
Let us consider, $\frac{7{{x}^{2}}+9x+3}{\left( x+5 \right)\left( {{x}^{2}}-3x+2 \right)}=\frac{A}{\left( x+5 \right)}+\frac{Bx+C}{\left( {{x}^{2}}-3x+2 \right)}$
Where, $P\left( x \right)=7{{x}^{2}}+9x+3$ and $Q\left( x \right)=\left( x+5 \right)\left( {{x}^{2}}-3x+2 \right)$
$\begin{align}
& \frac{7{{x}^{2}}+9x+3}{\left( x+5 \right)\left( {{x}^{2}}-3x+2 \right)}=\frac{A}{\left( x+5 \right)}+\frac{Bx+C}{\left( {{x}^{2}}-3x+2 \right)} \\
& 7{{x}^{2}}+9x+3=A\left( {{x}^{2}}-3x+2 \right)+Bx\left( x+5 \right)+C\left( x+5 \right)
\end{align}$
Therefore, the partial fraction does not make sense because the degree of $P\left( x \right)$ is less than the degree of $Q\left( x \right)$.
Thus, this partial fraction does make sense.