Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 7 - Section 7.3 - Partial Fractions - Exercise Set - Page 842: 62

Answer

The provided statement does not make sense.

Work Step by Step

Let us consider, $\frac{7{{x}^{2}}+9x+3}{\left( x+5 \right)\left( {{x}^{2}}-3x+2 \right)}=\frac{A}{\left( x+5 \right)}+\frac{Bx+C}{\left( {{x}^{2}}-3x+2 \right)}$ Where, $P\left( x \right)=7{{x}^{2}}+9x+3$ and $Q\left( x \right)=\left( x+5 \right)\left( {{x}^{2}}-3x+2 \right)$ $\begin{align} & \frac{7{{x}^{2}}+9x+3}{\left( x+5 \right)\left( {{x}^{2}}-3x+2 \right)}=\frac{A}{\left( x+5 \right)}+\frac{Bx+C}{\left( {{x}^{2}}-3x+2 \right)} \\ & 7{{x}^{2}}+9x+3=A\left( {{x}^{2}}-3x+2 \right)+Bx\left( x+5 \right)+C\left( x+5 \right) \end{align}$ Therefore, the partial fraction does not make sense because the degree of $P\left( x \right)$ is less than the degree of $Q\left( x \right)$. Thus, this partial fraction does make sense.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.