Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 7 - Section 7.3 - Partial Fractions - Exercise Set - Page 842: 50

Answer

The partial fraction decomposition is $\frac{1}{{{x}^{2}}-ax-bx+ab}=\frac{1/\left( a-b \right)}{x-a}+\frac{1/\left( b-a \right)}{x-b}$.

Work Step by Step

We know that the partial fraction can be written as, $\begin{align} & \frac{1}{{{x}^{2}}-ax-bx+ab}=\frac{1}{x\left( x-a \right)-b\left( x-a \right)} \\ & =\frac{1}{\left( x-a \right)\left( x-b \right)} \end{align}$ And, $\begin{align} & \frac{1}{\left( x-a \right)\left( x-b \right)}=\frac{A}{x-a}+\frac{B}{x-b} \\ & =\frac{A\left( x-b \right)+B\left( x-a \right)}{\left( x-a \right)\left( x-b \right)} \end{align}$ And, $1=A\left( x-b \right)+B\left( x-a \right)$ …… (1) Substitute the value of $x=a$ in equation (1), $\begin{align} & 1=A\left( a-b \right) \\ & A=\frac{1}{a-b} \end{align}$ Again, put the value of $x=b$ in equation (1), $\begin{align} & 1=B\left( b-a \right) \\ & B=\frac{1}{b-a} \end{align}$ Therefore, $\frac{1}{{{x}^{2}}-ax-bx+ab}=\frac{1/\left( a-b \right)}{x-a}+\frac{1/\left( b-a \right)}{x-b}$ Thus, the partial fraction decomposition is $\frac{1}{{{x}^{2}}-ax-bx+ab}=\frac{1/\left( a-b \right)}{x-a}+\frac{1/\left( b-a \right)}{x-b}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.