Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.7 - The Dot Product - Exercise Set - Page 794: 80

Answer

See the explanation below.

Work Step by Step

Consider the given identity $\left( c\mathbf{u} \right)\cdot \mathbf{v}=c\left( \mathbf{u}\cdot \mathbf{v} \right)$ …… (1) For the given vectors $\mathbf{u}={{a}_{1}}\mathbf{i}+{{b}_{1}}\mathbf{j}$ $\mathbf{v}={{a}_{2}}\mathbf{i}+{{b}_{2}}\mathbf{j}$ Now, take the left side of equation (1). $c\mathbf{u}=c{{a}_{1}}\mathbf{i}+c{{b}_{1}}\mathbf{j}$ $\mathbf{v}={{a}_{2}}\mathbf{i}+{{b}_{2}}\mathbf{j}$ The left side of the given identity represents the dot product of two vectors $c\mathbf{u}\ \text{ and }\ \mathbf{v}$ and it is calculated as $\left( c\mathbf{u} \right)\cdot \mathbf{v}=c{{a}_{1}}{{a}_{2}}+c{{b}_{1}}{{b}_{2}}$ …… (2) Now, take the right side of equation (1). The right side of the given identity represents the dot product of two vectors $c\mathbf{u}\ \text{ and }\ \mathbf{v}$ multiplied by $c$ and it is calculated as Dot product of $\mathbf{u}\ \text{ and }\ \mathbf{v}$ is $\mathbf{u}\cdot \mathbf{v}={{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}$ …… (3) Multiply equation (3) by $c$ to get $c(\mathbf{u}\cdot \mathbf{v})=c{{a}_{1}}{{a}_{2}}+c{{b}_{1}}{{b}_{2}}$ …… (4) From equations (2) and (4), we get: the left side of equation (1) is equal to the right side of equation (1). Thus, $\left( c\mathbf{u} \right)\cdot \mathbf{v}=c\left( \mathbf{u}\cdot \mathbf{v} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.