Answer
The projection of a vector $\mathbf{v}$ onto a vector $\mathbf{w}$ is $\text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v}=\frac{\mathbf{v}\centerdot \mathbf{w}}{{{\left\| \mathbf{w} \right\|}^{\mathbf{2}}}}\mathbf{w}$. The projection is shown below:
Work Step by Step
First, draw the vectors $\mathbf{v}$ and $\mathbf{w}$ with the same initial point in two different directions.
Suppose the angle between $\mathbf{v}$ and $\mathbf{w}$ is $\theta $.
Now, draw a perpendicular line to the vector $\mathbf{w}$ from the vertex of $\mathbf{v}$.
The line joining in the direction of the perpendicular line of $\mathbf{v}$ onto the $\mathbf{w}$ from initial point is represented as $\text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v}$.
Consider the cosine function to get $\text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v}$.
$\begin{align}
& \cos \theta =\frac{\left\| \text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v} \right\|}{\left\| \mathbf{v} \right\|} \\
& \left\| \text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v} \right\|=\left\| \mathbf{v} \right\|\cos \theta
\end{align}$
Consider,
$\left\| \text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v} \right\|=\left\| \mathbf{v} \right\|\cos \theta $ $\cdot \cdot \cdot \cdot \cdot \cdot $ (1)
The projection of vectors is also represented as the dot product.
Hence, the dot product of vectors $\mathbf{v}$ and $\mathbf{w}$ is represented as
$\begin{align}
& \mathbf{v}\centerdot \mathbf{w}=\left\| \mathbf{v} \right\|\left\| \mathbf{w} \right\|\text{cos }\!\!\theta\!\!\text{ } \\
& \frac{\mathbf{v}\centerdot \mathbf{w}}{\left\| \mathbf{w} \right\|}=\left\| \mathbf{v} \right\|\text{cos }\!\!\theta\!\!\text{ }
\end{align}$
Consider,
$\frac{\mathbf{v}.\mathbf{w}}{\left\| \mathbf{w} \right\|}=\left\| \mathbf{v} \right\|\text{cos }\!\!\theta\!\!\text{ }$ $\cdot \cdot \cdot \cdot \cdot \cdot $ (2)
Compare equations (1) and (2) and get
$\left\| \text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v} \right\|=\frac{\mathbf{v}\centerdot \mathbf{w}}{\left\| \mathbf{w} \right\|}$
The above expression is used to find the magnitude of a projection vector.
Now get the projection vector using a unit vector of $\text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v}$ in the direction of the vector $\mathbf{w}$.
$\begin{align}
& \text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v}=\left( \frac{\mathbf{v}\centerdot \mathbf{w}}{\left\| \mathbf{w} \right\|} \right)\left( \frac{\mathbf{w}}{\left\| \mathbf{w} \right\|} \right) \\
& \text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v}=\frac{\mathbf{v}\centerdot \mathbf{w}}{{{\left\| \mathbf{w} \right\|}^{2}}}\mathbf{w} \\
\end{align}$