Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.3 - Polar Coordinates - Exercise Set - Page 743: 48

Answer

The polar coordinates of $\left( 0,-6 \right)$ are $\left( 6,\frac{3\pi }{2} \right)$.

Work Step by Step

The polar coordinates of the point are $\left( r,\theta \right)$. Now, rewrite the polar coordinates in terms of rectangular coordinates as below: $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$ …… (1) $\tan \theta =\frac{y}{x}$ …… (2) Substituting the values of $x\ \text{ and }\ y$ in (1) and (2), we get $\begin{align} & r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\ & =\sqrt{{{\left( 0 \right)}^{2}}+{{\left( -6 \right)}^{2}}} \\ & =\sqrt{36} \\ & r=6 \end{align}$ And, $\begin{align} & \tan \theta =\frac{y}{x} \\ & =\frac{-6}{0} \\ & \tan \theta =\infty \left( \text{undefined} \right) \end{align}$ Hence, $\tan \theta =\infty $ And, $\tan \frac{\pi }{2}=\infty $ The $\theta $ lies on the negative y-axis which means $\begin{align} & \theta =\pi +\frac{\pi }{2} \\ & =\frac{3\pi }{2} \end{align}$ Therefore, the polar coordinates of $\left( 0,-6 \right)$ are $\left( 6,\frac{3\pi }{2} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.