Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.3 - Polar Coordinates - Exercise Set - Page 743: 47

Answer

The polar coordinates of $\left( 5,0 \right)$ are $\left( 5,0 \right)$.

Work Step by Step

The polar coordinates of the point are $\left( r,\theta \right)$. Now, rewrite the polar coordinates in terms of rectangular coordinates as below: $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$ …… (1) $\tan \theta =\frac{y}{x}$ …… (2) Substituting the values of $x\ \text{ and }\ y$ in (1) and (2), we get $\begin{align} & r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\ & =\sqrt{{{\left( 5 \right)}^{2}}+{{\left( 0 \right)}^{2}}} \\ & =\sqrt{25} \\ & r=5 \end{align}$ And, $\begin{align} & \tan \theta =\frac{y}{x} \\ & =\frac{0}{5} \\ & \tan \theta =0 \end{align}$ Hence, $\tan \theta =0$ And, $\tan 0=0$ Also, $\theta $ lies on polar axis which means $\theta =0$ Therefore, the polar coordinates of $\left( 5,0 \right)$ are $\left( 5,0 \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.