Answer
The polar coordinates of $\left( 5,0 \right)$ are $\left( 5,0 \right)$.
Work Step by Step
The polar coordinates of the point are $\left( r,\theta \right)$.
Now, rewrite the polar coordinates in terms of rectangular coordinates as below:
$r=\sqrt{{{x}^{2}}+{{y}^{2}}}$ …… (1)
$\tan \theta =\frac{y}{x}$ …… (2)
Substituting the values of $x\ \text{ and }\ y$ in (1) and (2), we get
$\begin{align}
& r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
& =\sqrt{{{\left( 5 \right)}^{2}}+{{\left( 0 \right)}^{2}}} \\
& =\sqrt{25} \\
& r=5
\end{align}$
And,
$\begin{align}
& \tan \theta =\frac{y}{x} \\
& =\frac{0}{5} \\
& \tan \theta =0
\end{align}$
Hence,
$\tan \theta =0$
And,
$\tan 0=0$
Also, $\theta $ lies on polar axis which means
$\theta =0$
Therefore, the polar coordinates of $\left( 5,0 \right)$ are $\left( 5,0 \right)$.