Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Mid-Chapter Check Point - Page 756: 5

Answer

The required solution corresponding to the two triangles is ${{A}_{1}}=55{}^\circ,{{B}_{1}}=83{}^\circ,{{b}_{1}}=19.3$ and ${{A}_{2}}=125{}^\circ,{{B}_{2}}=13{}^\circ,{{b}_{2}}=4.4$, respectively.

Work Step by Step

The provided angle and sides of the triangle are given below: $C=42{}^\circ,a=16,c=13$ Now, by using the law of sines, we will find the angle A of the triangle. That is, $\begin{align} & \frac{\sin \,A}{a}=\frac{\sin \,C}{c} \\ & \frac{\sin \,A}{16}=\frac{\sin \,42{}^\circ }{13} \\ & \sin \,A=16\times \frac{\sin \,42{}^\circ }{13} \\ & \sin \,A=0.8235 \\ & A={{\sin }^{-1}}(0.8235) \end{align}$ According to this measurement, two angles are possible. That is, $\begin{align} & {{A}_{1}}=55{}^\circ \\ & {{A}_{2}}=180{}^\circ -55{}^\circ \\ & =125{}^\circ \end{align}$ Thus, there are two possible triangles.Therefore, $\begin{align} & {{B}_{1}}=180{}^\circ -C-{{A}_{1}} \\ & =180{}^\circ -42{}^\circ -55{}^\circ \\ & =83{}^\circ \end{align}$ and $\begin{align} & {{B}_{2}}=180{}^\circ -C-{{A}_{2}} \\ & =180{}^\circ -42{}^\circ -125{}^\circ \\ & =13{}^\circ \end{align}$ Using the law of sines we will find ${{b}_{1}}\ \text{ and }\ {{b}_{2}}$: $\begin{align} & \frac{\sin \,{{B}_{1}}}{{{b}_{1}}}=\frac{\sin \,C}{c} \\ & \frac{\sin \,83{}^\circ }{{{b}_{1}}}=\frac{\sin \,42{}^\circ }{13} \\ & {{b}_{1}}=13\times \frac{\sin \,83{}^\circ }{\sin \,42{}^\circ } \\ & {{b}_{1}}=19.3 \end{align}$ and $\begin{align} & \frac{\sin \,{{B}_{2}}}{{{b}_{2}}}=\frac{\sin \,C}{c} \\ & \frac{\sin \,13{}^\circ }{{{b}_{2}}}=\frac{\sin \,42{}^\circ }{13} \\ & {{b}_{2}}=13\times \frac{\sin \,13{}^\circ }{\sin \,42{}^\circ } \\ & {{b}_{2}}=4.4 \end{align}$ In one triangle, the solution is ${{A}_{1}}=55{}^\circ,{{B}_{1}}=83{}^\circ,{{b}_{1}}=19.3$. In the second triangle, the solution is ${{A}_{2}}=125{}^\circ,{{B}_{2}}=13{}^\circ,{{b}_{2}}=4.4$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.