Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Mid-Chapter Check Point - Page 756: 14

Answer

The required ordered pair in polar coordinates is $\left( 4,\frac{5\pi }{3} \right)$.

Work Step by Step

The Cartesian coordinates in polar form are $x=r\,\cos \,\theta \ \ \text{ and }\ y=r\,\sin \,\theta $. The provided data is $x=2\ \text{ and }\ y=-2\sqrt{3}$. Therefore, the required polar coordinates can be determined by using the following formulas: $r=\sqrt{{{y}^{2}}+{{x}^{2}}}\ \text{ and }\ \text{tan}\,\theta =\frac{y}{x}$ Therefore, the polar coordinate r is given by: $\begin{align} & r=\sqrt{{{y}^{2}}+{{x}^{2}}} \\ & =\ \sqrt{{{2}^{2}}+{{\left( -2\sqrt{3} \right)}^{2}}} \\ & =4 \end{align}$ and $\begin{align} & \text{tan}\,\theta =\frac{y}{x} \\ & =\frac{-2\sqrt{3}}{2} \\ & =-\sqrt{3} \end{align}$ Here, the tan function is negative; thus, $\theta $ would lie in the fourth quadrant. Therefore, $\begin{align} & \theta =2\pi -\frac{\pi }{3} \\ & =\frac{5\pi }{3} \end{align}$ Thus, the required polar coordinates are $\left( r,\theta \right)=\left( 4,\frac{5\pi }{3} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.