Answer
The exact value of the Mach speed of the aircraft is $\underline{M=\sqrt{2-\sqrt{2}}.\left( 2+\sqrt{2} \right)}$ and the approximate value is $\underline{M\approx 2.6.}$
Work Step by Step
We know that the relationship between the cone’s vertex angle, $\theta,$ and the Mach speed, $M,$ of an aircraft that is flying faster than the speed of sound is
$\sin \frac{\theta }{2}=\frac{1}{M}$
We use the half-angle formula for the half angle of sine in terms of cosine. That means
$\sin \frac{\theta }{2}=\pm \sqrt{\frac{1-\cos \theta }{2}}$
Since the Mach speed is positive, take only the positive value. That means
$\begin{align}
& \frac{1}{M}=\sin \frac{\theta }{2} \\
& =+\sqrt{\frac{1-\cos \theta }{2}}
\end{align}$
Since the given value of the cone’s vertex angle $\theta =\frac{\pi }{4}.$
$\begin{align}
& \sin \frac{\theta }{2}=\sqrt{\frac{1-\cos \theta }{2}} \\
& =\sqrt{\frac{1-\cos \frac{\pi }{4}}{2}}
\end{align}$
Since, $\cos \frac{\pi }{4}=\frac{1}{\sqrt{2}}\text{ or }\cos \frac{\pi }{4}=\frac{\sqrt{2}}{2}$,
$\begin{align}
& \sin \frac{\theta }{2}=\sqrt{\frac{1-\cos \frac{\pi }{4}}{2}} \\
& =\sqrt{\frac{1-\frac{1}{\sqrt{2}}}{2}}
\end{align}$
Solving the equation as follows:
$\begin{align}
& \sin \frac{\theta }{2}=\sqrt{\frac{1-\frac{\sqrt{2}}{2}}{2}} \\
& =\sqrt{\frac{2-\sqrt{2}}{4}} \\
& =\frac{\sqrt{2-\sqrt{2}}}{2}
\end{align}$
$\text{That means at }\theta =\frac{\pi }{4},$
$\begin{align}
& \sin \frac{\theta }{2}=\frac{\sqrt{2-\sqrt{2}}}{2} \\
& \frac{1}{M}=\frac{\sqrt{2-\sqrt{2}}}{2} \\
\end{align}$
And take the reciprocal on both sides. That means
$M=\frac{2}{\sqrt{2-\sqrt{2}}}$
And divide the numerator and the denominator of the right-hand side $\sqrt{2-\sqrt{2}}.$ Then, we have
$\begin{align}
& M=\frac{2}{\sqrt{2-\sqrt{2}}}.\frac{\sqrt{2-\sqrt{2}}}{\sqrt{2-\sqrt{2}}} \\
& =\frac{2\sqrt{2-\sqrt{2}}}{2-\sqrt{2}}
\end{align}$
Divide the numerator and denominator of the right-hand side $2+\sqrt{2}.$ Then, we have
$\begin{align}
& M=\frac{2\sqrt{2-\sqrt{2}}}{2-\sqrt{2}}.\frac{2+\sqrt{2}}{2+\sqrt{2}} \\
& =\frac{4\sqrt{2-\sqrt{2}}+2\sqrt{2}\sqrt{2-\sqrt{2}}}{4-2} \\
& =\frac{2\left( 2\sqrt{2-\sqrt{2}}+\sqrt{2}\sqrt{2-\sqrt{2}} \right)}{2} \\
& =2\sqrt{2-\sqrt{2}}+\sqrt{2}\sqrt{2-\sqrt{2}}
\end{align}$
Also, taking $\sqrt{2-\sqrt{2}}$ common, we have
$M=\sqrt{2-\sqrt{2}}.\left( 2+\sqrt{2} \right)$
Thus, the approximate value of $M$ as a decimal to the nearest tenth calculated using a calculator is
$\begin{align}
& M=\sqrt{2-\sqrt{2}}.\left( 2+\sqrt{2} \right) \\
& \approx 2.6
\end{align}$