Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.3 - Double-Angle, Power-Reducing, and Half-Angle Formulas - Exercise Set - Page 682: 80

Answer

The exact value of the Mach speed of the aircraft is $\underline{M=4\sqrt{2-\sqrt{3}}+2\sqrt{3}\sqrt{2-\sqrt{3}}}$ and the approximate value is $\underline{M\approx 3.9.}$

Work Step by Step

We know that the relationship between the cone’s vertex angle, $\theta,$ and the Mach speed, $M,$ of an aircraft that is flying faster than the speed of sound is: $\sin \frac{\theta }{2}=\frac{1}{M}.$ We use the half angle formula for the half angle of sine in terms of cosine. That means $\sin \frac{\theta }{2}=\pm \sqrt{\frac{1-\cos \theta }{2}}$ Since, Mach speed is positive, take only the positive value. That means, $\begin{align} & \frac{1}{M}=\sin \frac{\theta }{2} \\ & =+\sqrt{\frac{1-\cos \theta }{2}} \end{align}$ Since, the provided value of the cone’s vertex angle, $\theta =\frac{\pi }{6}.$ $\sin \frac{\theta }{2}=\sqrt{\frac{1-\cos \theta }{2}}=\sqrt{\frac{1-\cos \frac{\pi }{6}}{2}}$ Since, $\cos \frac{\pi }{6}=\frac{\sqrt{3}}{2}.$ $\sin \frac{\theta }{2}=\sqrt{\frac{1-\cos \frac{\pi }{6}}{2}}=\sqrt{\frac{1-\frac{\sqrt{3}}{2}}{2}}=\sqrt{\frac{2-\sqrt{3}}{4}}=\frac{\sqrt{2-\sqrt{3}}}{2}$ $\text{That means at }\theta =\frac{\pi }{6},$ $\begin{align} & \sin \frac{\theta }{2}=\frac{\sqrt{2-\sqrt{3}}}{2} \\ & \frac{1}{M}=\frac{\sqrt{2-\sqrt{3}}}{2} \\ \end{align}$ And take the reciprocal on both sides. That means: $M=\frac{2}{\sqrt{2-\sqrt{3}}}$ Then, divide the numerator and denominator of the right hand side $\sqrt{2-\sqrt{3}}.$ Then, $M=\frac{2}{\sqrt{2-\sqrt{3}}}.\frac{\sqrt{2-\sqrt{3}}}{\sqrt{2-\sqrt{3}}}=\frac{2\sqrt{2-\sqrt{3}}}{2-\sqrt{3}}$ Divide the numerator and denominator of the right hand side $2+\sqrt{3}.$ Then, $M=\frac{2\sqrt{2-\sqrt{3}}}{2-\sqrt{3}}.\frac{2+\sqrt{3}}{2+\sqrt{3}}=\frac{4\sqrt{2-\sqrt{3}}+2\sqrt{3}\sqrt{2-\sqrt{3}}}{4-3}=4\sqrt{2-\sqrt{3}}+2\sqrt{3}\sqrt{2-\sqrt{3}}$ Thus, the approximate value of $M$ as a decimal to the nearest tenth calculated using a calculator is: $M=4\sqrt{2-\sqrt{3}}+2\sqrt{3}\sqrt{2-\sqrt{3}}\approx 3.9$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.