Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Mid-Chapter Check Point - Page 683: 8

Answer

See the explanation below.

Work Step by Step

The expression on the left side ${{\sin }^{2}}\frac{t}{2}$ can be further expressed as ${{\left( \sin \frac{t}{2} \right)}^{2}}$. ${{\sin }^{2}}\frac{t}{2}={{\left( \sin \frac{t}{2} \right)}^{2}}$ And the above expression can be further simplified by using the power reducing formula ${{\sin }^{2}}x=\frac{1-\cos 2x}{2}$. Thus, the above expression can be further simplified as: $\begin{align} & {{\left( \sin \frac{t}{2} \right)}^{2}}=\left( \sqrt{\frac{1-\cos t}{2}} \right) \\ & =\frac{1-\cos t}{2} \end{align}$ Then, multiplying and dividing the expression by tan t. $\begin{align} & \frac{1-\cos t}{2}=\frac{1-\cos t}{2}.\frac{\tan t}{\tan t} \\ & =\frac{\tan t-\cos t.\tan t}{2\tan t} \end{align}$ Now, apply the quotient identity $\tan t=\frac{\sin t}{\cos t}$ $\begin{align} & \frac{\tan t-\cos t.\tan t}{2\tan t}=\frac{\tan t-\cos t.\frac{\sin t}{\cos t}}{2\tan t} \\ & =\frac{\tan t-\sin t}{2\tan t} \end{align}$ Hence, the left side is equal to the right side, ${{\sin }^{2}}\frac{t}{2}=\frac{\tan t-\sin t}{2\tan t}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.