Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Mid-Chapter Check Point - Page 683: 1

Answer

See the explanation below.

Work Step by Step

The expression on the left side $\cos x\left( \tan x+\cot x \right)$ can be written in the form of cos and sin by using the quotient identity. We know the quotient identity of trigonometry $\cot x=\frac{\cos x}{\sin x}$ and $\tan x=\frac{\sin x}{\cos x}$. Therefore, the expression on the left side can be written and simplified as: $\begin{align} & \text{cos }x\left( \tan x+\cot x \right)=\cos x\left( \frac{\sin x}{\cos x}+\frac{\cos x}{\sin x} \right) \\ & =\cos x\left( \frac{\sin x}{\cos x}.\frac{\sin x}{\sin x}+\frac{\cos x}{\sin x}.\frac{\cos x}{\cos x} \right) \\ & =\cos x\left( \frac{{{\sin }^{2}}x}{\sin x\cos x}+\frac{{{\cos }^{2}}x}{\sin x\cos x} \right) \\ & =\cos x\left( \frac{{{\sin }^{2}}x+{{\cos }^{2}}x}{\sin x\cos x} \right) \end{align}$ And the expression can be further simplified by applying the Pythagorean identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ $\begin{align} & \cos x\left( \frac{{{\sin }^{2}}x+{{\cos }^{2}}x}{\sin x\cos x} \right)=\cos x.\frac{1}{\sin x\cos x} \\ & =\frac{1}{\sin x} \\ & =\csc x \end{align}$ And the expression $\frac{1}{\sin x}$ can be further simplified by applying the reciprocal identity $\frac{1}{\sin x}=\csc x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.