Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Mid-Chapter Check Point - Page 683: 4

Answer

See the explanation below.

Work Step by Step

The expression on the left side $\frac{\sin t-1}{\text{cos }t}$ can be further simplified by multiplying by cot t. $\begin{align} & \frac{\sin t-1}{\text{cos }t}=\frac{\sin t-1}{\text{cos }t}.\frac{\cot t}{\cot t} \\ & =\frac{\sin t.\cot t-\cot t}{\cos t.\cot t} \end{align}$ We know the quotient identity of $\cot x=\frac{\cos x}{\sin x}$. Applying the identity to the expression, we get: $\begin{align} & \frac{\sin t\cot t-\cot t}{\cos t.\cot t}=\frac{\sin t\frac{\cos t}{\sin t}-\cot t}{\cos t.\cot t} \\ & =\frac{1.\cos t-\cot t}{\cos t.\cot t} \\ & =\frac{\cos t-\cot t}{\cos t.\cot t} \end{align}$ Hence, the left side is equal to the right side $\frac{\sin t-1}{\text{cos }t}=\frac{\cos t-\cot t}{\cos t\cot t}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.