Answer
$\dfrac{1}{4}$
Work Step by Step
Since, $\tan( \dfrac{\pi}{2}-\theta)=\cot \theta $
The trigonometric ratios are as follows:
$\sin \theta =\dfrac{y}{r} \\ \cos \theta =\dfrac{x}{r} \\ \tan \theta =\dfrac{y}{x}\\ \csc \theta =\dfrac{r}{y} \\ \sec \theta =\dfrac{r}{x} \\ \cot \theta =\dfrac{x}{y}$
where, $ r=\sqrt {x^2+y^2}$
Now, we have
$\tan( \dfrac{\pi}{2}-\theta)=\cot \theta=\dfrac{1}{4}$