Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 3 - Section 3.5 - Exponential Growth and Decay; Modeling Data - Exercise Set - Page 506: 32

Answer

$ t\approx 34.2$ years from now.

Work Step by Step

Model: $ A=A_{0}e^{kt}$ Unknown: $ k $, when $ A=1000,\ A_{0}=1400,\ t=5$ years $1000=1400e^{k\cdot 5}\qquad... /\div 1400$ $0.714286=e^{k\cdot 5}\qquad.../\ln(...)$ $-0.336472=5k\qquad.../\div(5)$ $ k\approx-0.067294$ So, our model is $ A=1000e^{-0.067294t}$, if we count t=0 as today. Now we find $ t $ for $ A=100$ $100=1000e^{-0.067294t}\qquad... /\div A_{0}$ $0.1=e^{-0.067294t}\qquad.../\ln(...)$ $\ln 0.1 =-0.067294t\qquad.../\div(-0.067294)$ $\displaystyle \frac{\ln 0.1}{-0.067294}=t $ $ t\approx 34.2$ years from now.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.