Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 3 - Section 3.5 - Exponential Growth and Decay; Modeling Data - Exercise Set - Page 506: 29

Answer

$ t\approx 7.1$ years

Work Step by Step

Model: $ A=A_{0}e^{kt}$ Unknown: $ k $, when $ A=0.5A_{0},\ t=22$ $0.5A_{0}=A_{0}e^{k\cdot 22}\qquad... /\div A_{0}$ $0.5=e^{k\cdot 22}\qquad.../\ln(...)$ $-0.693147=22k\qquad.../\div(22)$ $ k\approx-0.031507$ So, our model is $ A=A_{0}e^{-0.031507t}$ Now we find $ t $ for $ A=0.8A_{0}$ $0.8A_{0}=A_{0}e^{-0.031507t}\qquad... /\div A_{0}$ $0.8=e^{-0.031507t}\qquad.../\ln(...)$ $\ln 0.8 =-0.031507t\qquad.../\div(-0.031507)$ $\displaystyle \frac{\ln 0.8}{-0.031507}=t $ $ t\approx 7.1$ years
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.