Answer
In 2040
Work Step by Step
Given the model $ A=1173.1e^{0.008t}$, we solve for t when $ A=1491$
$ 1491=1173.1e^{0.008t}\qquad $... /$\div $1173.1
$\displaystyle \frac{1491}{1173.1}=e^{0.008t}\qquad $... $/\ln(...)$
$\displaystyle \ln\frac{1491}{1173.1}=0.008t\qquad $... /$\div 0.008$
$ t=\displaystyle \frac{\ln\frac{1491}{1173.1}}{0.008}\approx 29,97\approx 30$ years
By this model, India will reach $1377$ million in 2040 (30 years from 2010).