Answer
$-0.0068$
Work Step by Step
Exponential growth model $: \quad A= A_{0}e^{kt}$.
If $ k \gt 0$, the function models the amount of a growing entity.
$ A_{0}$ is the original amount, or size, of the growing entity at time t = 0,
$ A $ is the amount at time $ t $, and
$ k $ is a constant representing the growth rate.
If k is negative, the model is an exponential decay model.
----
Model: $ A=A_{0}e^{kt}$
Unknown: $ k $, when $ A_{0}=7.1, A=5.4, t=40,$
$ 5.4=7.1e^{k\cdot 40}\qquad $... /$\div 7.1$
$ 0.76056\approx e^{k\cdot 40}\qquad $... $/\ln(...)$
$-0.2737=40k\qquad $... /$\div 40$
$ k\approx-0.0068$