Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.6 - Rational Functions and Their Graphs - Exercise Set - Page 399: 89

Answer

The graph of the function is shown below as,

Work Step by Step

The given expression is $\frac{5{{x}^{2}}}{{{x}^{2}}-4}\cdot \frac{{{x}^{2}}+4x+4}{10{{x}^{3}}}$ Now, simplify it as: $\begin{align} & \frac{5{{x}^{2}}}{{{x}^{2}}-4}\cdot \frac{{{x}^{2}}+4x+4}{10{{x}^{3}}}=\frac{5{{x}^{2}}}{\left( x+2 \right)\left( x-2 \right)}\cdot \frac{{{\left( x+2 \right)}^{2}}}{10{{x}^{3}}} \\ & =\frac{\left( x+2 \right)}{2x\left( x-2 \right)} \end{align}$ The simplified equation is $f\left( x \right)=\frac{\left( x+2 \right)}{2x\left( x-2 \right)}$. Now, use the following steps to plot the graph of the function as, Step 1: Compute the symmetry. Find $f\left( -x \right)$ by replacing $x$ with $-x$. $\begin{align} & f\left( x \right)=\frac{\left( x+2 \right)}{2x\left( x-2 \right)} \\ & f\left( -x \right)=\frac{\left( -x+2 \right)}{2\left( -x \right)\left( -x-2 \right)} \\ & =\frac{\left( -x+2 \right)}{2\left( x \right)\left( x+2 \right)} \end{align}$ Thus, the graph is not symmetrical about the $y\text{-}$ axis or origin. Step 2: Compute the $y\text{-}$ intercept by finding $f\left( 0 \right)$. Then, $\begin{align} & f\left( x \right)=\frac{\left( x+2 \right)}{2x\left( x-2 \right)} \\ & f\left( 0 \right)=\frac{\left( 0+2 \right)}{2\left( 0 \right)\left( 0-2 \right)} \\ & =\infty \end{align}$ Thus, the graph of the function has no $y\text{-}$ intercept. Step 3: Compute the $x\text{-}$ intercept. Evaluate the numerator term equal to zero. $\begin{align} & x+2=0 \\ & x=-2 \end{align}$ The graph passes through the point $\left( -2,0 \right)$. Step 4: Determine the vertical asymptote. Solve the denominator term equal to zero. $\begin{align} & 2x\left( x-2 \right)=0 \\ & x=0,2 \end{align}$ Thus, the function has two vertical asymptotes and their equations are $x=0$ and $x=2$. Step 5: Find the horizontal asymptote. The degree of the numerator and denominator term is different. There is no horizontal asymptote. The equation is $y=0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.