Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.6 - Rational Functions and Their Graphs - Exercise Set - Page 399: 64

Answer

Graph the function as:

Work Step by Step

Step 1: Substitute $x=-x$ $\begin{align} & f\left( x \right)=\frac{-3x}{x+2} \\ & f\left( -x \right)=\frac{-3\left( -x \right)}{\left( -x \right)+2} \\ & =\frac{3x}{-x+2} \end{align}$ Therefore, the function $f\left( -x \right)$ is not equal to either $f\left( x \right)$ or $-f\left( x \right)$. So, the graph of the function is neither symmetrical about the $y$-axis nor origin. Step 2: To calculate the x intercepts equate $f\left( x \right)=0$. $\begin{align} & \frac{-3x}{x+2}=0 \\ & x=0 \end{align}$ Step 3: To calculate the y intercepts evaluate $f\left( 0 \right)$ $\begin{align} & f\left( 0 \right)=\frac{-3\left( 0 \right)}{\left( 0 \right)+2} \\ & f\left( 0 \right)=0 \\ \end{align}$ Step 4: Since the degree of the numerator is equal to the denominator, the horizontal asymptote is: $y=-3$. Step 5: For the vertical asymptote, equate the denominator to 0. $\begin{align} & x+2=0 \\ & x=-2 \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.