Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.6 - Rational Functions and Their Graphs - Exercise Set - Page 399: 80

Answer

Graph the function as:

Work Step by Step

Step 1: Substitute $-x$ in place of x. $\begin{align} & f\left( x \right)=\frac{{{x}^{2}}-4x+3}{{{\left( x+1 \right)}^{2}}} \\ & f\left( -x \right)=\frac{{{\left( -x \right)}^{2}}-4\left( -x \right)+3}{{{\left( \left( -x \right)+1 \right)}^{2}}} \\ & =\frac{{{x}^{2}}+4x+3}{{{\left( 1-x \right)}^{2}}} \\ & \ne -f\left( x \right) \end{align}$ And, $\begin{align} & -f\left( x \right)=-\left( \frac{{{x}^{2}}-4x+3}{{{\left( x+1 \right)}^{2}}} \right) \\ & \ne f\left( -x \right) \end{align}$ Hence the graph of the function is symmetric neither about the $y$-axis nor origin. Step 2: To calculate the x intercepts eqaute $f\left( x \right)=0$. $\begin{align} & \frac{{{x}^{2}}-4x+3}{{{\left( x+1 \right)}^{2}}}=0 \\ & x=1,3 \end{align}$ , Step 3: To calculate the y intercept evaluate $f\left( 0 \right)$ $f\left( 0 \right)=3$ Step 4: Since the degree of the numerator is equal to the denominator, the horizontal asymptote is: $y=1$ Step 5: For the vertical asymptote, equate the denominator to 0. $x=-1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.