Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Review Exercises - Page 429: 6

Answer

The standard form of the expression $\frac{6}{5+i}$ is $\frac{15}{13}-\frac{3}{13}i$.

Work Step by Step

Consider the expression, $\frac{6}{5+i}$ The imaginary part is in the denominator, so we multiply the numerator and denominator by the complex conjugate of the denominator -- that is, for the complex number $\left( 5+i \right)$ its complex conjugate is $\left( 5-i \right)$. Multiply the expression by $\frac{\left( 5-i \right)}{\left( 5-i \right)}$. $\begin{align} & \frac{6}{5+i}=\frac{6}{5+i}\cdot \frac{5-i}{5-i} \\ & =\frac{6\left( 5-i \right)}{\left( 5+i \right)\left( 5-i \right)} \end{align}$ The product of the complex number $\left( a+bi \right)$ and its complex conjugate $\left( a-bi \right)$ results in a real number -- that is, $\left( a+bi \right)\left( a-bi \right)={{a}^{2}}+{{b}^{2}}$. Therefore, $\frac{6\left( 5-i \right)}{\left( 5+i \right)\left( 5-i \right)}=\frac{6\left( 5-i \right)}{{{5}^{2}}+{{1}^{2}}}$ Simplify the above expression $\begin{align} & \frac{6\left( 5-i \right)}{{{5}^{2}}+{{1}^{2}}}=\frac{30-6i}{25+1} \\ & =\frac{30-6i}{26} \end{align}$ Further simplify the expression $\frac{30-6i}{26}$ $\begin{align} & \frac{6\left( 5-i \right)}{{{5}^{2}}+{{1}^{2}}}=\frac{30-6i}{26} \\ & =\frac{2\left( 15-3i \right)}{2\left( 13 \right)} \\ & =\frac{15-3i}{13} \\ & =\frac{15}{13}-\frac{3}{13}i \end{align}$ Hence, the standard form of the expression $\frac{6}{5+i}$ is $\frac{15}{13}-\frac{3}{13}i$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.