Answer
The simplified form of the expression $4i\left( 3i-2 \right)$ is $-12-8i$.
Work Step by Step
Consider the expression, $4i\left( 3i-2 \right)$
Use the distributive property.
$\begin{align}
& 4i\left( 3i-2 \right)=4i\left( 3i \right)+4i\left( -2 \right) \\
& =12{{i}^{2}}-8i
\end{align}$
Use the definition ${{i}^{2}}=-1$.
$\begin{align}
& 4i\left( 3i-2 \right)=12\left( -1 \right)-8i \\
& =-12-8i
\end{align}$
Therefore, the simplified form of the expression $4i\left( 3i-2 \right)$ is $-12-8i$.