Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.4 - Introduction to Derrivatives - Exercise Set - Page 1175: 48

Answer

The slope of the graph of a function at a point $\left( a,f\left( a \right) \right)$ gives the instantaneous rate of change of $f$ with respect to x at a.

Work Step by Step

The slope of the graph of a function at a point $\left( a,f\left( a \right) \right)$ is given by, ${{m}_{\tan }}=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( a+h \right)-f\left( a \right)}{h}$ For example: Consider a function $f\left( x \right)=x+4$ and the point $\left( 1,5 \right)$. $\begin{align} & f\left( a+h \right)=1+h+4 \\ & =5+h \end{align}$ $\begin{align} & f\left( a \right)=1+4 \\ & =5 \end{align}$ Substitute these values in ${{m}_{\tan }}=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( a+h \right)-f\left( a \right)}{h}$. $\begin{align} & {{m}_{\tan }}=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( a+h \right)-f\left( a \right)}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{5+h-5}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{h}{h} \\ & =1 \end{align}$ Hence, the slope of the equation $f\left( x \right)=x+4$ at $\left( 1,5 \right)$ is 1. It gives instantaneous rate of change of $f$ with respect to x at a.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.