Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.4 - Introduction to Derrivatives - Exercise Set - Page 1175: 45

Answer

a) The instantaneous velocity of the ball $2$ seconds after being hit is $32\text{ feet per second}$ and the instantaneous velocity of the ball $4$ seconds after being hit is $-32\text{ feet per second}$. b) The ball reaches maximum height $3\text{ seconds}$ after being hit and the maximum height that the ball reaches is $148\text{ feet}$.

Work Step by Step

(a) Consider that the function $s\left( t \right)=-16{{t}^{2}}+96t+4$ describes the height of the ball above the ground in feet, t seconds after being hit with an initial height of $4$ feet and an initial velocity of $96\text{ feet per second}$. Compute the derivative of $s\left( t \right)=-16{{t}^{2}}+96t+4$ using the formula $s'\left( t \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{s\left( t+h \right)-s\left( t \right)}{h}$ as follows: To compute $s\left( t+h \right)$, substitute $t=t+h$ in the function $s\left( t \right)=-16{{t}^{2}}+96t+4$. $s\left( t+h \right)=-16{{\left( t+h \right)}^{2}}+96\left( t+h \right)+4$ Put value of $s\left( t+h \right)$ in $s'\left( t \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{s\left( t+h \right)-s\left( t \right)}{h}$ , $\begin{align} & s'\left( t \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{s\left( t+h \right)-s\left( t \right)}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{\left( -16{{\left( t+h \right)}^{2}}+96\left( t+h \right)+4 \right)-\left( -16{{t}^{2}}+96t+4 \right)}{h} \end{align}$ Now, simplify ${{\left( t+h \right)}^{2}}$ by using the property ${{\left( A+B \right)}^{2}}={{A}^{2}}+2AB+{{B}^{2}}$ $\begin{align} & s'\left( t \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{\left( -16\left( {{t}^{2}}+{{h}^{2}}+2th \right)+96\left( t+h \right)+4 \right)-\left( -16{{t}^{2}}+96t+4 \right)}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{-16{{t}^{2}}-16{{h}^{2}}-32th+96t+96h+4+16{{t}^{2}}-96t-4}{h} \end{align}$ Combine the like terms in the numerator, then divide the numerator and denominator by h; this gives, $s'\left( t \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( -32t-16h+96 \right)$ Apply the limits, $s'\left( t \right)=\left( -32t+96 \right)$ Now, substitute $t=2$ in $s'\left( t \right)$ to compute the instantaneous velocity at $2$ second after being hit. $\begin{align} & s'\left( 2 \right)=\left( -32\left( 2 \right)+96 \right) \\ & =-64+96 \\ & =32 \end{align}$ Thus, the instantaneous velocity $2$ seconds after being hit is $32\text{ feet per second}$. Now, substitute $t=4$ in $s'\left( t \right)$ to compute the instantaneous velocity at $4$ seconds after being hit. $\begin{align} & s'\left( 4 \right)=\left( -32\left( 4 \right)+96 \right) \\ & =-128+96 \\ & =-32 \end{align}$ Thus, the instantaneous velocity $4$ seconds after being hit is $-32\text{ feet per second}$. (b) Consider that the ball has zero instantaneous velocity and the function $s\left( t \right)=-16{{t}^{2}}+96t+4$ describes the height of the ball above the ground in feet, t seconds after being hit with an initial height of $4$ feet and an initial velocity of $96\text{ feet per second}$. From part (a), $s'\left( t \right)=\left( -32t+96 \right)$ The maximum height has to be calculated. So, set $s'\left( t \right)$ equal to zero. $\begin{align} & \left( -32t+96 \right)=0 \\ & 32t=96 \\ & t=3 \end{align}$ Thus, the ball reaches maximum height $3$ seconds after being hit. Now, substitute $t=3$ in $s\left( t \right)$ to compute the maximum height at $3$ seconds after being hit. $\begin{align} & s\left( 3 \right)=-16{{\left( 3 \right)}^{2}}+96\left( 3 \right)+4 \\ & =-144+288+4 \\ & =148 \end{align}$ Thus, the maximum height that the ball reaches is $148\text{ feet}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.