Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.4 - Introduction to Derrivatives - Exercise Set - Page 1174: 5

Answer

a) The slope of the tangent to the graph of $f\left( x \right)=5{{x}^{2}}$ at $\left( -2,20 \right)$ is $-20$. b) The slope intercept equation of the tangent line is $y=-20x-20$.

Work Step by Step

(a) Consider the function $f\left( x \right)=5{{x}^{2}}$ and the point $\left( -2,20 \right)$ Here, $\left( a,f\left( a \right) \right)=\left( -2,20 \right)$ Now, compute the slope of the tangent line for the function $f\left( x \right)=5{{x}^{2}}$ as follows: Put $a=-2$ , ${{m}_{\tan }}=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( -2+h \right)-f\left( -2 \right)}{h}$ To compute $f\left( -2+h \right)$, substitute $x=-2+h$ in the function $f\left( x \right)=5{{x}^{2}}$. ${{m}_{\tan }}=\underset{h\to 0}{\mathop{\lim }}\,\frac{\left[ 5{{\left( -2+h \right)}^{2}} \right]-5{{\left( -2 \right)}^{2}}}{h}$ Now, simplify ${{\left( -2+h \right)}^{2}}$ by using the property ${{\left( A-B \right)}^{2}}={{A}^{2}}-2AB+{{B}^{2}}$. $\begin{align} & {{m}_{\tan }}=\underset{h\to 0}{\mathop{\lim }}\,\frac{5\left( 4-4h+{{h}^{2}} \right)-20}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{20-20h+5{{h}^{2}}-20}{h} \end{align}$ Combine the like terms in the numerator. ${{m}_{\tan }}=\underset{h\to 0}{\mathop{\lim }}\,\frac{5{{h}^{2}}-20h}{h}$ Now, factor the numerator and divide the numerator as well as the denominator by h, $\begin{align} & {{m}_{\tan }}=\underset{h\to 0}{\mathop{\lim }}\,\frac{5h\left( h-4 \right)}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,5\left( h-4 \right) \end{align}$ Apply the limits and simplify. $\begin{align} & {{m}_{\tan }}=5\left( 0-4 \right) \\ & =-20 \end{align}$ Thus, the slope of the tangent to the graph of $f\left( x \right)=5{{x}^{2}}$ at $\left( -2,20 \right)$ is $-20$. (b) Consider the function $f\left( x \right)=5{{x}^{2}}$ and the point $\left( -2,20 \right)$ From part (a), the slope of the tangent to the graph of $f\left( x \right)=5{{x}^{2}}$ at $\left( -2,20 \right)$ is $-20$. Now compute the slope intercept equation of the tangent line as follows: Here, the tangent line passes through the point $\left( -2,20 \right)$ which implies ${{x}_{1}}=-2$ and ${{y}_{1}}=20$ Substitute $m=-20,{{x}_{1}}=-2,{{y}_{1}}=20$ in the equation $y-{{y}_{1}}=m\left( x-{{x}_{1}} \right)$. $\begin{align} & y-20=-20\left[ x-\left( -2 \right) \right] \\ & y-20=-20\left( x+2 \right) \\ & y=-20x-40+20 \\ & y=-20x-20 \end{align}$ Thus, the slope intercept equation of the tangent line is $y=-20x-20$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.