Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.4 - Introduction to Derrivatives - Exercise Set - Page 1174: 28

Answer

a) The derivative of $f\left( x \right)=1.3{{x}^{2}}-1.4x$ at x is $f'\left( x \right)=2.6x-1.4$. b) The slope of the tangent line to the graph of $f\left( x \right)=1.3{{x}^{2}}-1.4x$ at $x=0$ is $f'\left( 0 \right)=-1.4$ and at $x=4$ is $f'\left( 4 \right)=9$.

Work Step by Step

(a) Consider the function, $f\left( x \right)=1.3{{x}^{2}}-1.4x$ Now, compute the derivate of $f\left( x \right)=1.3{{x}^{2}}-1.4x$ using the formula $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h}$. To compute $f\left( x+h \right)$, substitute $x=x+h$ in the function $f\left( x \right)=1.3{{x}^{2}}-1.4x$. $f\left( x+h \right)=1.3{{\left( x+h \right)}^{2}}-1.4x$ Now, $\begin{align} & f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{\left[ 1.3{{\left( x+h \right)}^{2}}-1.4\left( x+h \right) \right]-\left( 1.3{{x}^{2}}-1.4x \right)}{h} \end{align}$ Now, simplify ${{\left( x+h \right)}^{2}}$ by using the property ${{\left( A+B \right)}^{2}}={{A}^{2}}+2AB+{{B}^{2}}$ and $-3\left( x+h \right)$ by using the distributive property $A\left( B+C \right)=AB+AC$. $\begin{align} & f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{1.3\left( {{x}^{2}}+2xh+{{h}^{2}} \right)-1.4x-1.4h-1.3{{x}^{2}}+1.4x}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{1.3{{x}^{2}}+2.6xh+1.3{{h}^{2}}-1.4x-1.4h-1.3{{x}^{2}}+1.4x}{h} \end{align}$ Combine the like terms in the numerator; this gives, $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{2.6xh+1.3{{h}^{2}}-1.4h}{h}$ Divide numerator and denominator by h. $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 2.6x+1.3h-1.4 \right)$ Apply the limits, $\begin{align} & f'\left( x \right)=2.6x+1.3\left( 0 \right)-1.4 \\ & =2.6x+0-1.4 \\ & =2.6x-1.4 \end{align}$ Thus, the derivative of $f\left( x \right)=1.3{{x}^{2}}-1.4x$ at x is $f'\left( x \right)=2.6x-1.4$. (b) Consider the function, $f\left( x \right)=1.3{{x}^{2}}-1.4x$ From part (a), the derivative of $f\left( x \right)=1.3{{x}^{2}}-1.4x$ at x is $f'\left( x \right)=2.6x-1.4$. To compute the slope of the tangent line at $x=0$, substitute $x=0$ in $f'\left( x \right)$. $\begin{align} & f'\left( 0 \right)=2.6\left( 0 \right)-1.4 \\ & =0-1.4 \\ & =-1.4 \end{align}$ To compute the slope of the tangent line at $x=4$, substitute $x=4$ in $f'\left( x \right)$. $\begin{align} & f'\left( 4 \right)=2.6\left( 4 \right)-1.4 \\ & =10.4-1.4 \\ & =9 \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.