Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.4 - Introduction to Derrivatives - Exercise Set - Page 1174: 35

Answer

b) The slope intercept equation of the tangent line is $y=x+1$.

Work Step by Step

(b) Consider the function, $f\left( x \right)=-\frac{1}{x+3}$ The $x$ coordinate for the tangent is $-2$. Substitute $x=-2$ in the function $f\left( x \right)=-\frac{1}{x+3}$. $\begin{align} & f\left( -2 \right)=-\frac{1}{\left( -2 \right)+3} \\ & =-\frac{1}{1} \\ & =-1 \end{align}$ Thus, the tangent line passes through $\left( -2,-1 \right)$. The value of $a$ from the point $\left( a,f\left( a \right) \right)$ or $\left( -2,-1 \right)$ is $-2$. Substitute $a=-2$ in ${{m}_{\tan }}=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( a+h \right)-f\left( a \right)}{h}$. ${{m}_{\tan }}=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( -2+h \right)-f\left( -2 \right)}{h}$ Substitute $x=-2+h$ in the function $f\left( x \right)=-\frac{1}{x+3}$ and replace $f\left( -2 \right)=-1$. $\begin{align} & {{m}_{\tan }}=\underset{h\to 0}{\mathop{\lim }}\,\frac{\left[ -\frac{1}{\left( -2+h \right)+3} \right]-\left( -1 \right)}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{\left[ -\frac{1}{h+1} \right]+1}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{-1+h+1}{h\left( h+1 \right)} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{1}{\left( h+1 \right)} \end{align}$ Apply the limits and simplify. $\begin{align} & {{m}_{\tan }}=\frac{1}{\left( 0+1 \right)} \\ & =1 \end{align}$ Thus, the slope of the tangent to the graph of $f\left( x \right)=-\frac{1}{x+3}$ at $\left( -2,-1 \right)$ is $1$. Substitute ${{x}_{1}}=-2$, ${{y}_{1}}=-1$ and $m=1$ in the equation $y-{{y}_{1}}=m\left( x-{{x}_{1}} \right)$. $\begin{align} & y-\left( -1 \right)=1\left[ x-\left( -2 \right) \right] \\ & y+1=\left( x+2 \right) \\ & y=x+2-1 \\ & y=x+1 \end{align}$ Therefore, the slope intercept equation of the tangent line is $y=x+1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.