Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.3 - Limits and Continuity - Exercise Set - Page 1162: 63

Answer

The solution set of the equation $\text{ }{{\log }_{2}}x+{{\log }_{2}}\left( x-4 \right)={{\log }_{2}}\left( 3x-10 \right)$ is $\left\{ 5 \right\}$.

Work Step by Step

Consider the expression, $\text{ }{{\log }_{2}}x+{{\log }_{2}}\left( x-4 \right)={{\log }_{2}}\left( 3x-10 \right)$ Apply the product property of the logarithm on the left side of the expression $\text{ }{{\log }_{2}}x+{{\log }_{2}}\left( x-4 \right)={{\log }_{2}}\left( 3x-10 \right)$ Therefore, $\begin{align} & \text{ }{{\log }_{2}}\left( x\left( x-4 \right) \right)={{\log }_{2}}\left( 3x-10 \right) \\ & \text{ }{{\log }_{2}}\left( {{x}^{2}}-4x \right)={{\log }_{2}}\left( 3x-10 \right) \\ & {{x}^{2}}-4x=3x-10 \\ & {{x}^{2}}-7x+10=0 \end{align}$ Solve the above equation, $\begin{align} & {{x}^{2}}-2x-5x+10=0 \\ & x\left( x-2 \right)-5\left( x-2 \right)=0 \\ & \left( x-2 \right)\left( x-5 \right)=0 \end{align}$ Further solve the above expression. $\left( x-2 \right)=0\text{ or }\left( x-5 \right)=0$ When $\left( x-2 \right)=0$, then $ x=2$ When $\left( x-5 \right)=0$, then $ x=5$ If $ x=2$, then substitute this value in equation $\text{ }{{\log }_{2}}x+{{\log }_{2}}\left( x-4 \right)={{\log }_{2}}\left( 3x-10 \right)$, $\begin{align} & \text{ }{{\log }_{2}}\left( 2 \right)+{{\log }_{2}}\left( 2-4 \right)={{\log }_{2}}\left( 3\left( 2 \right)-10 \right) \\ & {{\log }_{2}}\left( 2 \right)+{{\log }_{2}}\left( -2 \right)={{\log }_{2}}\left( -4 \right) \end{align}$ Since the value inside the logarithm cannot be negative, thus $ x=2$ does not satisfy this equation. If $ x=5$, then substitute this value in equation $\text{ }{{\log }_{2}}x+{{\log }_{2}}\left( x-4 \right)={{\log }_{2}}\left( 3x-10 \right)$, $\begin{align} & \text{ }{{\log }_{2}}\left( 5 \right)+{{\log }_{2}}\left( 5-4 \right)={{\log }_{2}}\left( 3\left( 5 \right)-10 \right) \\ & {{\log }_{2}}\left( 5 \right)+{{\log }_{2}}\left( 1 \right)={{\log }_{2}}\left( 5 \right) \\ & {{\log }_{2}}\left( 5 \right)={{\log }_{2}}\left( 5 \right) \end{align}$ Hence, the solution set of the equation $\text{ }{{\log }_{2}}x+{{\log }_{2}}\left( x-4 \right)={{\log }_{2}}\left( 3x-10 \right)$ is $\left\{ 5 \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.