Answer
The value of $\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( a+h \right)-f\left( a \right)}{h}$ for $ f\left( x \right)=\sqrt{x}$, $ a=1$ is $\frac{1}{2}$.
Work Step by Step
The function given is $ f\left( x \right)=\sqrt{x}$.
As $ a=1$,
$\begin{align}
& f\left( a+h \right)=f\left( 1+h \right) \\
& =\sqrt{1+h}
\end{align}$
$\begin{align}
& f\left( a \right)=f\left( 1 \right) \\
& =\sqrt{1} \\
& =1
\end{align}$
Consider the provided limit $\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( a+h \right)-f\left( a \right)}{h}$.
Substitute the values of $ f\left( a+h \right)$ and $ f\left( a \right)$:
$\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( a+h \right)-f\left( a \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\frac{\sqrt{1+h}-1}{h}$
Rationalize the numerator by multiplying the numerator and denominator by $\sqrt{1+h}+1$:
$\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( a+h \right)-f\left( a \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\frac{\sqrt{1+h}-1}{h} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\frac{\sqrt{1+h}-1}{h}\times \frac{\sqrt{1+h}+1}{\sqrt{1+h}+1}
\end{align}$
Using $\left( \sqrt{a}-\sqrt{b} \right)\left( \sqrt{a}+\sqrt{b} \right)={{\left( \sqrt{a} \right)}^{2}}-{{\left( \sqrt{b} \right)}^{2}}=a-b $:
$\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( a+h \right)-f\left( a \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\frac{\sqrt{1+h}-1}{h}\times \frac{\sqrt{1+h}+1}{\sqrt{1+h}+1} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\frac{1+h-1}{h\left( \sqrt{1+h}+1 \right)} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\frac{h}{h\left( \sqrt{1+h}+1 \right)} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\frac{1}{\sqrt{1+h}+1}
\end{align}$
Using the quotient property of limits $\underset{x\to a}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\frac{\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)}{\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)},\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)\ne 0$:
$\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( a+h \right)-f\left( a \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\frac{1}{\sqrt{1+h}+1} \\
& =\frac{\underset{h\to 0}{\mathop{\lim }}\,1}{\underset{h\to 0}{\mathop{\lim }}\,\left( \sqrt{1+h}+1 \right)}
\end{align}$
Use limit property $\underset{x\to a}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)=\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$ in the denominator:
$\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( a+h \right)-f\left( a \right)}{h}=\frac{\underset{h\to 0}{\mathop{\lim }}\,1}{\underset{h\to 0}{\mathop{\lim }}\,\left( \sqrt{1+h}+1 \right)} \\
& =\frac{\underset{h\to 0}{\mathop{\lim }}\,1}{\underset{h\to 0}{\mathop{\lim }}\,\sqrt{1+h}+\underset{h\to 0}{\mathop{\lim }}\,1}
\end{align}$
Using limit property $\underset{x\to a}{\mathop{\lim }}\,\sqrt{f\left( x \right)}=\sqrt{\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)}$:
$\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( a+h \right)-f\left( a \right)}{h}=\frac{\underset{h\to 0}{\mathop{\lim }}\,1}{\underset{h\to 0}{\mathop{\lim }}\,\sqrt{1+h}+\underset{h\to 0}{\mathop{\lim }}\,1} \\
& =\frac{\underset{h\to 0}{\mathop{\lim }}\,1}{\sqrt{\underset{h\to 0}{\mathop{\lim }}\,\left( 1+h \right)}+\underset{h\to 0}{\mathop{\lim }}\,1}
\end{align}$
Use limit property $\underset{x\to a}{\mathop{\lim }}\,c=c $:
$\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( a+h \right)-f\left( a \right)}{h}=\frac{\underset{h\to 0}{\mathop{\lim }}\,1}{\sqrt{\underset{h\to 0}{\mathop{\lim }}\,\left( 1+h \right)}+\underset{h\to 0}{\mathop{\lim }}\,1} \\
& =\frac{1}{\sqrt{1+0}+1} \\
& =\frac{1}{\sqrt{1}+1} \\
& =\frac{1}{2}
\end{align}$