Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.2 - Finding Limits Using Properties of Limits - Exercise Set - Page 1155: 80

Answer

The value of $\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( a+h \right)-f\left( a \right)}{h}$ for $ f\left( x \right)={{x}^{2}}+2x-3$, $ a=1$ is 4.

Work Step by Step

The function is given as $ f\left( x \right)={{x}^{2}}+2x-3$ As $ a=1$, $\begin{align} & f\left( a+h \right)=f\left( 1+h \right) \\ & ={{\left( 1+h \right)}^{2}}+2\left( 1+h \right)-3 \\ & ={{1}^{2}}+\left( 2\times 1\times h \right)+{{h}^{2}}+2+2h-3 \\ & =1+2h+{{h}^{2}}+2+2h-3 \end{align}$ Solve further: $ f\left( a+h \right)={{h}^{2}}+4h $ $\begin{align} & f\left( a \right)=f\left( 1 \right) \\ & ={{1}^{2}}+\left( 2\times 1 \right)-3 \\ & =1+2-3 \\ & =0 \end{align}$ Consider the provided limit $\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( a+h \right)-f\left( a \right)}{h}$. Substitute the values of $ f\left( a+h \right)$ and $ f\left( a \right)$ $\begin{align} & \underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( a+h \right)-f\left( a \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\frac{{{h}^{2}}+4h-0}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{{{h}^{2}}+4h}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{h\left( h+4 \right)}{h} \end{align}$ Cancel out the common factor $ h $ from both the numerator and denominator. $\begin{align} & \underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( a+h \right)-f\left( a \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\frac{h\left( h+4 \right)}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\left( h+4 \right) \end{align}$ Using limit property $\underset{x\to a}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)=\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$ $\begin{align} & \underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( a+h \right)-f\left( a \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\left( h+4 \right) \\ & =\underset{h\to 0}{\mathop{\lim }}\,h+\underset{h\to 0}{\mathop{\lim }}\,4 \end{align}$ Use the property $\underset{x\to a}{\mathop{\lim }}\,c=c\text{ }$ in $\underset{h\to 0}{\mathop{\lim }}\,4$: $\begin{align} & \underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( a+h \right)-f\left( a \right)}{h}=0+4 \\ & =4 \end{align}$ Thus, the value of $\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( a+h \right)-f\left( a \right)}{h}$ for $ f\left( x \right)={{x}^{2}}+2x-3$, $ a=1$ is 4.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.