Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.2 - Finding Limits Using Properties of Limits - Exercise Set - Page 1155: 78

Answer

The limit $\underset{x\to 0}{\mathop{\lim }}\,x\left( 1-\frac{1}{x} \right)$ is equal to $-1$.

Work Step by Step

Consider the provided limit, $\underset{x\to 0}{\mathop{\lim }}\,x\left( 1-\frac{1}{x} \right)$ Simplify it as follows $\begin{align} & \underset{x\to 0}{\mathop{\lim }}\,x\left( 1-\frac{1}{x} \right)=\underset{x\to 0}{\mathop{\lim }}\,\left( x\times 1-x\times \frac{1}{x} \right) \\ & =\underset{x\to 0}{\mathop{\lim }}\,\left( x-1 \right) \end{align}$ Use limit property $\underset{x\to a}{\mathop{\lim }}\,\left( f\left( x \right)-g\left( x \right) \right)=\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)-\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$ $\begin{align} & \underset{x\to 0}{\mathop{\lim }}\,x\left( 1-\frac{1}{x} \right)=\underset{x\to 0}{\mathop{\lim }}\,\left( x-1 \right) \\ & =\underset{x\to 0}{\mathop{\lim }}\,x-\underset{x\to 0}{\mathop{\lim }}\,1 \end{align}$ Using limit property, $\underset{x\to a}{\mathop{\lim }}\,c=c\text{, where }c\text{ is constant}$ $\begin{align} & \underset{x\to 0}{\mathop{\lim }}\,x\left( 1-\frac{1}{x} \right)=\underset{x\to 0}{\mathop{\lim }}\,\left( x-1 \right) \\ & =\underset{x\to 0}{\mathop{\lim }}\,x-\underset{x\to 0}{\mathop{\lim }}\,1 \\ & =0-1 \\ & =-1 \end{align}$ Thus, $\underset{x\to 0}{\mathop{\lim }}\,x\left( 1-\frac{1}{x} \right)=-1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.