Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 10 - Cumulative Review Exercises - Page 1128: 21

Answer

The values of x, y, z are $6,-4,2$ respectively.

Work Step by Step

Let us assume a matrix $ A $ be formed from the given system of equations, $ A=\left[ \begin{matrix} 1 & -2 & 1 \\ 2 & -1 & -1 \\ 3 & 5 & -4 \\ \end{matrix} \right]$ Then, matrix $ B $ is obtained by writing the right-hand side of the equations as follows: $ B=\left[ \begin{matrix} 16 \\ 14 \\ -10 \\ \end{matrix} \right]$ Write the augmented matrix $\left[ A|B \right]$ as shown below: $\left[ \begin{matrix} 1 & -2 & 1 & 16 \\ 2 & -1 & -1 & 14 \\ 3 & 5 & -4 & -10 \\ \end{matrix} \right]$ Then, one can apply ${{R}_{2}}\to 2{{R}_{1}}-{{R}_{2}}$ and one gets: $\left[ \begin{matrix} 1 & -2 & 1 & 16 \\ 0 & -3 & 3 & 18 \\ 3 & 5 & -4 & -10 \\ \end{matrix} \right]$ Apply ${{R}_{3}}\to 3{{R}_{1}}-{{R}_{3}}$ and one gets: $\left[ \begin{matrix} 1 & -2 & 1 & 16 \\ 0 & -3 & 3 & 18 \\ 0 & -11 & 7 & 58 \\ \end{matrix} \right]$ Apply ${{R}_{2}}\to \frac{{{R}_{2}}}{-3}$ and one gets: $\left[ \begin{matrix} 1 & -2 & 1 & 16 \\ 0 & 1 & -1 & -6 \\ 0 & -11 & 7 & 58 \\ \end{matrix} \right]$ Apply ${{R}_{1}}\to {{R}_{1}}+2{{R}_{2}}$ and one gets: $\left[ \begin{matrix} 1 & 0 & -1 & 4 \\ 0 & 1 & -1 & -6 \\ 0 & -11 & 7 & 58 \\ \end{matrix} \right]$ Apply ${{R}_{3}}\to 11{{R}_{2}}+{{R}_{3}}$ and one gets: $\left[ \begin{matrix} 1 & 0 & -1 & 4 \\ 0 & 1 & -1 & -6 \\ 0 & 0 & -4 & -8 \\ \end{matrix} \right]$ Apply ${{R}_{1}}\to {{R}_{1}}-\frac{{{R}_{3}}}{4}$ and one gets: $\left[ \begin{matrix} 1 & 0 & 0 & 6 \\ 0 & 1 & -1 & -6 \\ 0 & 0 & -4 & -8 \\ \end{matrix} \right]$ Apply ${{R}_{2}}\to {{R}_{2}}-\frac{{{R}_{3}}}{4}$ and one gets: $\left[ \begin{matrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & -4 & -8 \\ \end{matrix} \right]$ Apply ${{R}_{3}}\to \frac{{{R}_{3}}}{-4}$ and one gets: $\left[ \begin{matrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 1 & 2 \\ \end{matrix} \right]$ Thus, the values of $ x,y,z $ are $6,-4,2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.