Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.9 - Distance and Midpoint Formulas; Circles - Exercise Set - Page 282: 97

Answer

$y+4=\frac{3}{4}(x-3)$

Work Step by Step

Step 1. We can identify that the circle $x^2+y^2=25$ is centered at $(0,0)$ with a radius $r=5$ Step 2. We can identify that point $(3,-4)$ is on the circle as $(3)^2+(-4)^2=25$ Step 3. The slope from the center to the point can be found as $m=\frac{-4}{3}=-\frac{4}{3}$ Step 4. As the tangent line is perpendicular to the line above, we have its slope as $n=-\frac{1}{m}=\frac{3}{4}$ Step 5. We can write the equation of the tangent line as $y+4=\frac{3}{4}(x-3)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.