Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.9 - Distance and Midpoint Formulas; Circles - Exercise Set - Page 282: 100

Answer

The required solution set is $\left\{ -4 \right\}$.

Work Step by Step

Consider the equation $\frac{2}{x+3}-\frac{4}{x+5}=\frac{6}{{{x}^{2}}+8x+15}$. Solve it as: $\begin{align} & \frac{2}{x+3}-\frac{4}{x+5}=\frac{6}{{{x}^{2}}+8x+15} \\ & \frac{2}{x+3}-\frac{4}{x+5}=\frac{6}{\left( x+3 \right)\left( x+5 \right)} \\ & \frac{2\left( x+5 \right)-4\left( x+3 \right)}{\left( x+3 \right)\left( x+5 \right)}=\frac{6}{\left( x+3 \right)\left( x+5 \right)} \\ & 2\left( x+5 \right)-4\left( x+3 \right)=6 \end{align}$ This implies, $\begin{align} & 2\left( x+5 \right)-4\left( x+3 \right)=6 \\ & 2x+10-4x-12=6 \\ & -2x-2=6 \\ & -2x=8 \end{align}$ And $\begin{align} & x=-\frac{8}{2} \\ & =-4 \end{align}$ Therefore, the solution set is $\left\{ -4 \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.