Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 6 - Trigonometric Functions - Chapter Review - Review Exercises - Page 434: 18

Answer

$\sin\theta=\dfrac{3}{5}$ $\cos\theta=-\dfrac{4}{5}$ $\tan\theta=-\dfrac{3}{4}$ $\cot\theta=-\dfrac{4}{3}$ $\csc\theta=\dfrac{5}{3}$

Work Step by Step

First we determine $\cos\theta$: $\cos\theta=\dfrac{1}{\sec\theta}=\dfrac{1}{-\dfrac{5}{4}}=-\dfrac{4}{5}$ Since $\tan\theta<0$ and $\cos\theta<0$, then angle $\theta$ is in $\text{Quadrant II}$. We have: $\cos\theta=\dfrac{x}{r}=-\dfrac{4}{5}$ Thus, $x=-4$ $r=5$ We find $y$ by using the formula $r^2=x^2+y^2$: $5^2=(-4)^2+y^2$ $25=16+y^2$ $9=y^2$ $\pm\sqrt9=y$ $\pm3=y$ Since $\theta$ is in $\text{Quadrant II}$ where $y$ is positive, then $y=3$. Compute $\sin\theta, \tan\theta, \cot\theta,\csc\theta$: $\sin\theta=\dfrac{y}{r}=\dfrac{3}{5}$ $\tan\theta=\dfrac{y}{x}=\dfrac{3}{-4}=-\dfrac{3}{4}$ $\cot\theta=\dfrac{x}{y}=\dfrac{-4}{3}=-\dfrac{4}{3}$ $\csc\theta=\dfrac{r}{y}=\dfrac{5}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.