Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 5 - Exponential and Logarithmic Functions - 5.4 Logarithmic Functions - 5.4 Assess Your Understanding - Page 295: 30

Answer

$-2$

Work Step by Step

The definition of the logarithmic function says that $y=\log_a{x}$ if and only if $a^y=x$. Also, $a\gt0,a\ne1$ and $x\gt0$. Hence $\log_3 {\frac{1}{9}}=y$, then $3^y=\frac{1}{9}$ and we know that $\frac{1}{9}=3^{-2}.$ Thus, $3^y=3^{-2}$. We know that $a^b=a^c\longrightarrow b=c$ if $a\ne1,a\ne-1$ (which applies here), hence $y=-2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.