Answer
$0$
Work Step by Step
The definition of the logarithmic function says that $y=\log_a{x}$ if and only if $a^y=x$. Also, $a\gt0,a\ne1$ and $x\gt0$.
Hence $\log_2 {1}=y$, then $2^y=1$ and we know that $1=2^0.$
Thus, $2^y=2^0$. We know that $a^b=a^c\longrightarrow b=c$ if $a\ne1,a\ne-1$ (which applies here), hence $y=0$.