Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 7 - Algebra: Graphs, Functions, and Linear Systems - 7.6 Modeling Data: Exponential, Logarithmic, and Quadratic Functions - Exercise Set 7.6 - Page 474: 9

Answer

See below:

Work Step by Step

(a) General equation of a parabola on \[y-\text{axis}\]is \[y=a{{x}^{2}}+bx+c\]. Now, for the parabola \[{{x}^{2}}+8x+7\], coefficient of \[{{x}^{2}}\]is 1. As, \[a>0\], thus the parabola opens upwards. (b) Compare the given equation of parabola\[y={{x}^{2}}+8x+7\]with the general equation and obtain the values of \[a,b\]and\[c\]as, \[\begin{align} & a=1 \\ & b=8 \\ & c=7 \end{align}\] Now,\[x\]coordinate of the vertex is obtained as, \[\begin{align} & x=-\frac{b}{2a} \\ & =-\frac{8}{2\times 1} \\ & =-\frac{8}{2} \\ & =-4 \end{align}\] Now, substitute above \[x\]coordinate in the equation of the parabola to get the\[y\]coordinate of the vertex as, \[\begin{align} & y={{\left( -4 \right)}^{2}}+8\left( -4 \right)+7 \\ & y=16-32+7 \\ & y=-9 \end{align}\] Thus, vertex is\[\left( -4,-9 \right)\]. (c) Substitute\[y=0\]in the parabola equation and solve for\[x\]as, \[\begin{align} & {{x}^{2}}+8x+7=0 \\ & {{x}^{2}}+x+7x+7=0 \\ & x\left( x+1 \right)+7\left( x+1 \right)=0 \\ & \left( x+1 \right)\left( x+7 \right)=0 \end{align}\] Thus, the given parabola cuts the \[x-\text{axis}\]at two points, that is, \[x=-1\]and \[x=-7\]. (d) Substitute\[x=0\]in the parabola equation and solve for\[y\]as, \[\begin{align} & y={{x}^{2}}+8x+7 \\ & y=0+0+7 \\ & y=7 \end{align}\] Thus, the given parabola cuts the\[y\]axis at\[y=7\].
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.