Answer
See below:
Work Step by Step
Find the value of\[f\left( x \right)\]for different value of\[x\], and make a table as:
When \[x=-2\]
\[\begin{align}
& f\left( x \right)={{2}^{-2-1}} \\
& =\frac{1}{{{2}^{3}}} \\
& =\frac{1}{8} \\
& =0.125
\end{align}\]
When \[x=-1\]
\[\begin{align}
& f\left( x \right)={{2}^{-1-1}} \\
& ={{2}^{-2}} \\
& =\frac{1}{4} \\
& =0.25
\end{align}\]
When \[x=0\]
\[\begin{align}
& f\left( x \right)={{2}^{0-1}} \\
& ={{2}^{-1}} \\
& =\frac{1}{2} \\
& =0.5
\end{align}\]
When \[x=1\]
\[\begin{align}
& f\left( x \right)={{2}^{1-1}} \\
& ={{2}^{0}} \\
& =1
\end{align}\]
When \[x=2\]
\[\begin{align}
& f\left( x \right)={{2}^{2-1}} \\
& ={{2}^{1}} \\
& =2
\end{align}\]