Answer
See below:
Work Step by Step
Find the value of\[f\left( x \right)\]for different value of\[x\], and make a table as:
When \[x=-2\]
\[\begin{align}
& f\left( x \right)={{3}^{-2-1}} \\
& =\frac{1}{{{3}^{3}}} \\
& =\frac{1}{27} \\
& =0.037
\end{align}\]
When \[x=-1\]
\[\begin{align}
& f\left( x \right)={{3}^{-1-1}} \\
& ={{3}^{-2}} \\
& =\frac{1}{9} \\
& =0.11
\end{align}\]
When \[x=0\]
\[\begin{align}
& f\left( x \right)={{3}^{0-1}} \\
& ={{3}^{-1}} \\
& =\frac{1}{3} \\
& =0.33
\end{align}\]
When \[x=1\]
\[\begin{align}
& f\left( x \right)={{3}^{1-1}} \\
& ={{3}^{0}} \\
& =1
\end{align}\]
When \[x=2\]
\[\begin{align}
& f\left( x \right)={{3}^{2-1}} \\
& ={{3}^{1}} \\
& =3
\end{align}\]