Answer
$\displaystyle \frac{AB}{PQ}=\frac{2}{3}$
$\displaystyle \frac{AC}{PR}=\frac{2}{3}$
$\displaystyle \frac{BC}{QR}=\frac{2}{3}$
Work Step by Step
We find the ratio of sides between the two triangles and simplify:
$\displaystyle \frac{AB}{PQ}=\frac{22~cm}{33~cm}=\frac{2*11}{3*11}=\frac{2}{3}$
$\displaystyle \frac{AC}{PR}=\frac{30~cm}{45~cm}=\frac{2*15}{3*15}=\frac{2}{3}$
$\displaystyle \frac{BC}{QR}=\frac{16~cm}{24~cm}=\frac{2*8}{3*8}=\frac{2}{3}$
The ratios are all the same, which makes sense for proportional triangles.