Answer
Everett 5.8
Charleston 6.4
Brookline 8.2
Fairfield 8.5
Davenport 11.2
Work Step by Step
Find the coordinates of each city.
Augusta: (0,0); Fairfield: (-8,-3)
Use the distance formula:
$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
$d=\sqrt{(-8-0)^2+(-3-0)^2}$
$d=\sqrt{(-8)^2+(-3)^2}$
$d=\sqrt{64+9}$
$d=\sqrt{73}$
$d=8.5$
Find the coordinates of each city.
Augusta: (0,0); Everett: (-3,5)
Use the distance formula:
$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
$d=\sqrt{(-3-0)^2+(5-0)^2}$
$d=\sqrt{(-3)^2+5^2}$
$d=\sqrt{9+25}$
$d=\sqrt{34}$
$d=5.8$
Find the coordinates of each city.
Augusta: (0,0); Brooklyn: (8,2)
Use the distance formula:
$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
$d=\sqrt{(8-0)^2+(2-0)^2}$
$d=\sqrt{8^2+2^2}$
$d=\sqrt{64+4}$
$d=\sqrt{68}$
$d=8.2$
Find the coordinates of each city.
Augusta: (0,0); Charleston: (4,5)
Use the distance formula:
$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
$d=\sqrt{(4-0)^2+(5-0)^2}$
$d=\sqrt{4^2+5^2}$
$d=\sqrt{16+25}$
$d=\sqrt{41}$
$d=6.4$
Find the coordinates of each city.
Augusta: (0,0); Davenport: (5,10)
Use the distance formula:
$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
$d=\sqrt{(5-0)^2+(10-0)^2}$
$d=\sqrt{5^2+10^2}$
$d=\sqrt{25+100}$
$d=\sqrt{125}$
$d=11.2$