Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.1 General Theory of nth Order Linear Equations - Problems - Page 224: 15

Answer

$W(1,x,x^3)(t)=6x$

Work Step by Step

we verify the given functions are the solutions of the differential equation by plugging them into it: $y=1\;\;\;\rightarrow \;\;\;x({1})'''-({1})''=\;0+0=0\\\\$ $y=x\;\;\;\rightarrow \;\;\;x({x})'''-({x})''=\;0+0=0\\\\$ $y=x^3\;\;\;\rightarrow \;\;\;x({x^3})'''-({x^3})''=\;6x-6x=0\\\\$ $W(1,x,x^3)(t)=\begin{vmatrix} 1 & x & x^3 \\ (1)' &(x)' & ({x^{3}})' \\ (1)'' & (x)'' &({x^{3}})'' \end{vmatrix}\;\;=\;\;\begin{vmatrix} 1 & x & x^3 \\ 0 & 1 & 3x^2\\ 0 & 0 & 6x \end{vmatrix}\;\;=$ $1.\begin{vmatrix} 1 & 3x^2\\ 0 & 6x \end{vmatrix}\;\;= 1.(6x)\;=\;6x$ $W(1,x,x^3)(t)=6x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.