Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.1 General Theory of nth Order Linear Equations - Problems - Page 224: 12

Answer

$W(1,t,cos(t),sin(t))(t)=1$.

Work Step by Step

we verify the given functions are the solutions of the differential equation by plugging them into it: $y=1\;\;\;\rightarrow \;\;\;{1}^{(4)}+{1}''=\;0+0=0\\\\$ $y=t\;\;\;\rightarrow \;\;\;{t}^{(4)}+{t}''=\;0+0=0\\\\$ $y=cos(t)\;\;\;\rightarrow \;\;\;{cos(t)}^{(4)}+{cos(t)}''=\;cos(t)-cos(t)=0\\\\$ $y=sin(t)\;\;\;\rightarrow \;\;\;{sin(t)}^{(4)}+{sin(t)}''=\;sin(t)-sin(t)=0\\\\$ $W(1,t,cos(t),sin(t))(t)=\begin{vmatrix} 1 &t & cos(t) & sin(t)\\ {1}' &{t}' & {cos(t)}' & {sin(t)}'\\ {1}'' &{t}''&{cos(t)}'' & {sin(t)}''\\ {1}'''&{t}'''&{cos(t)}'''&{sin(t)}''' \end{vmatrix}\;\;=\;\;\begin{vmatrix} 1 & t& cos(t) & sin(t)\\ 0& 1&-sin(t) & cos(t)\\ 0 & 0 &-cos(t) & -sin(t)\\ 0 &0& sin(t) & -cos(t) \end{vmatrix}\;\;=\;\;1.\begin{vmatrix} 1 &-sin(t) &cos(t) \\ 0 &-cos(t) & -sin(t)\\ 0 &sin(t) &-cos(t) \end{vmatrix}\;=\;1.\begin{vmatrix} -cos(t) &-sin(t) \\ sin(t) &-cos(t) \end{vmatrix}\;\;=\;1.[cos^2(t)\;+\;sin^2(t)]\;=\;1.[1]=1\\\\$ $W(1,t,cos(t),sin(t))(t)=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.