Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.1 General Theory of nth Order Linear Equations - Problems - Page 224: 14

Answer

$W(1,t,e^{-t},te^{-t})(t)=e^{-2t}$

Work Step by Step

we verify the given functions are the solutions of the differential equation by plugging them into it: $y=1\;\;\;\rightarrow \;\;\;{1}^{(4)}+2({1})'''+({1})''=\;0+0+0=0\\\\$ $y=t\;\;\;\rightarrow \;\;\;({t})^{(4)}+2({t})'''+({t})''=\;0+0+0=0\\\\$ $y=e^{-t}\;\;\;\rightarrow \;\;\;{e^{-t}}^{(4)}+2({e^{-t}})'''+({e^{-t}})''=\;e^{-t}-2e^{-t}+e^{-t}=0\\\\$ $y=te^{-t}\;\;\;\rightarrow \;\;\;({te^{-t}})^{(4)}+2({te^{-t}})'''+({te^{-t}})''=\;-4e^{-t}+te^{-t}+2(3e^{-t}-te^{-t})-2e^{-t}+te^{-t}=0\\\\$ $W(1,t,e^{-t},te^{-t})(t)=\begin{vmatrix} 1 &t & e^{-t} & te^{-t}\\ {1}' &{t}' & ({e^{-t}})' & ({te^{-t}})'\\ {1}'' &{t}''& ({e^{-t}})'' & ({te^{-t}})''\\ {1}'''&{t}'''& ({e^{-t}})'''& ({te^{-t}})''' \end{vmatrix}\;\;=$ $\;\;\begin{vmatrix} 1 & t& cos(t) & sin(t)\\ 0& 1&-e^{-t} & e^{-t}-te^{-t}\\ 0 & 0 &e^{-t} & -2e^{-t}+te^{-t}\\ 0 &0& -e^{-t} & 3e^{-t}-te^{-t} \end{vmatrix}\;\;=$ $\;\;1.\begin{vmatrix} 1&-e^{-t} & e^{-t}-te^{-t} \\ 0 &e^{-t} & -2e^{-t}+te^{-t}\\ 0& -e^{-t} & 3e^{-t}-te^{-t} \end{vmatrix}\;=\;1.\begin{vmatrix} e^{-t} & -2e^{-t}+te^{-t} \\ -e^{-t} & 3e^{-t}-te^{-t} \end{vmatrix}\;=$ $\;1.[3e^{-2t}-te^{-2t}\;-2e^{-2t}-te^{-2t}]\;=\;e^{-2t}\\\\$ $W(1,t,e^{-t},te^{-t})(t)=e^{-2t}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.